The content of the publications and the links suggested in them are the sole responsibility of the authors and not of the METROPOLITAN UNIVERSITY OF EDUCATION, SCIENCE AND TECHNOLOGY (UMECIT) or DIALOGUS magazine. They are protected by international copyright laws as well as the UMECIT and DIALOGUS logos, hence their reproduction is totally prohibited.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors maintain the copyright and transfer the right of the first publication to the journal, with the article registered with Creative Commons Attribution-NonCommercial-NoDerivatives License, which allow others They can download the works published in this magazine and share them with other people, as long as their authorship is recognized, but they cannot be changed in any way nor can they be used commercially.
Authors are recommended to include their work in social networks such as Researchgate and institutional repositories once the article or visible fact has been published on the journal page, without forgetting to include the digital document identifier and the name of the journal.
Abstract
This article reflects the findings of a research process that sought to identify the characteristics that a teaching model should have to enhance the development of Mathematical Thinking through the elements provided by problem solving and thus strengthen the teaching and learning processes of mathematics. taking into account the perspectives of rural primary school teachers and students. Thus, this study was developed under the method of holistic understanding from projective research using documentary review techniques and the survey divided into a Mathematical Thinking scale for students and a questionnaire for teachers. The results obtained demonstrated that the expertise mastered by the teacher is not facilitating student learning, since the strategies and didactics applied in the classroom and outside of it do not provide students with the necessary skills to transcend from rote knowledge to that is applicable to its context and can be spread outside the classroom. Consequently, the Modipema teaching model was designed to strengthen the teaching strategies applied by teachers and help rural students learn to learn.
References
Ayllón, M., Gómez, I., & Ballesta-Claver, J. (2016). Pensamiento matemático y creatividad a través de la invención y resolución de problemas matemáticos. Propósitos y Representaciones, 4(1), 169-218.doi:http://dx.doi.org/10.20511/pyr2016.v4n1.89
Boaler, D. (2016). Mindset mathematics: Teaching for learning in the 21st century. John Wiley & Sons.
Cantoral, R., Alanis, J., Cordero, F., y Farfán, R. (2011). Desarrollo del pensamiento matemático.
Cazco, G. H. O., Olalla, M. R. S., & Abad, F. M. (2018). Modelos didácticos en la educación superior: una realidad que se puede cambiar. Profesorado, Revista de Currículum y Formación del Profesorado, 22(2), 447-469.
Chrobak, R., & Leiva Benegas, M. (2006). Mapas conceptuales y modelos didácticos de profesores de química.
Del Valle Coronel, M., & Curotto, M. M. (2008). La resolución de problemas como estrategia de enseñanza y aprendizaje. Revista electrónica de enseñanza de las ciencias, 7(2), 464.
Donoso Osorio, E., Valdés Morales, R., & Cisternas Núñez, P. (2020). Las interacciones pedagógicas en las clases de resolución de problemas matemáticos. Páginas de Educación, 13(1), 82-106.
García Pérez, F. F. (2000). Un modelo didáctico alternativo para transformar la educación: el Modelo de Investigación en la Escuela. Scripta nova. Revista Electrónica de Geografía y Ciencias Sociales, 4 (64), 1-24.
García, J. J. G. (1998). La creatividad y la resolución de problemas como bases de un modelo didáctico alternativo. Revista educación y pedagogía, (21), 145-173.
Hurtado de Barrera, Jacqueline. (2010) “Metodología de la investigación: guía para una comprensión holística de la ciencia”. Caracas: Quirón Ediciones, 2010.
Ministerio de Educación Nacional (1998). Matemáticas. Lineamientos curriculares. MEN.
Ministerio de Educación Nacional (MEN). (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Bogotá, D.C.: MEN.
Nivela-Cornejo, M. A., Morales-Caguana, E. F., & Rivero-Villareal, V. S. (2020). Construcción del conocimiento tecnológico con la metodología Holística. Dominio de las Ciencias, 6(3), 412-421.
Polya, G. (1957). How to solve it. Princeton University Press.
Requesens, E., & Díaz, G. M. (2009). Una revisión de los modelos didácticos y su relevancia en la enseñanza de la ecología. Revista Argentina de Humanidades y Ciencias Sociales, 7(1).
Rodríguez-García, Alejandro, & Arias-Gago, Ana Rosa. (2022). ¿El aprendizaje basado en indagación mejora el rendimiento académico del alumnado en ciencias? Análisis basado en PISA 2018. Revista Colombiana de Educación, (86), 53-74. Epub December 22, 2022.https://doi.org/10.17227/rce.num86-12232
Samaniego, Á. H. F. (2017). Pensamiento matemático y el quehacer científico. PädiUAQ, 1(1), 26-39.
Schoenfeld, A. B. (1992). Learning to think mathematically: Problem solving, metacognition, and self-regulation. Lawrence Erlbaum Associates.