Dimensions

PlumX

Cómo citar
Álvarez, B. (2025). Saxitoxinas: Un análisis exhaustivo de su impacto y avances en la investigación. Saluta, 1(12), 44–69. https://doi.org/10.37594/saluta.v1i12.1656
Términos de licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Los manuscritos enviados a Saluta deben ser originales e inéditos y no deben estar simultáneamente en proceso de publicación en otras revistas, compilaciones o cualquier otro medio de publicación. El contenido de las publicaciones y los enlaces sugeridos en las mismas son responsabilidad absoluta de los autores y no de la UNIVERSIDAD METROPOLITANA DE EDUCACIÓN, CIENCIA Y TECNOLOGÍA (UMECIT) ni de Saluta. Están protegidos por leyes internacionales de derecho de autor al igual que los logos de UMECIT y Saluta, de allí que esté totalmente prohibida su reproducción. Los derechos de autor serán de la UMECIT.

Bajo una Creative Commons Attribution License los autores pueden compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.

Resumen

Las saxitoxinas, neurotoxinas potentes producidas por dinoflagelados del género Alexandrium, han sido objeto numerosos estudio desde su descubrimiento debido a sus serias implicaciones para la salud pública y la seguridad alimentaria. Estas toxinas actúan sobre los canales de sodio en las células nerviosas, impidiendo la transmisión de señales y provocando parálisis. Diversas especies de dinoflagelados producen saxitoxinas, cuya producción está controlada genéticamente mediante genes y enzimas específicas. Las algas productoras de saxitoxinas se encuentran en distintas regiones del mundo, influencia que depende de factores ambientales. Las floraciones de algas nocivas (FAN) que generan saxitoxinas impactan notablemente los ecosistemas acuáticos, afectando la cadena alimentaria y disminuyendo la biodiversidad. Organismos marinos como los moluscos bivalvos pueden acumular estas toxinas, afectando a depredadores, incluidos los seres humanos. Las saxitoxinas representan una amenaza significativa para la seguridad alimentaria, especialmente en el consumo de mariscos. La intoxicación paralítica por mariscos (PSP) puede causar graves síntomas neurológicos. Para proteger la salud pública, se implementan programas de monitoreo y restricciones sanitarias. Los avances recientes en investigación incluyen nuevos métodos de detección más sensibles y rápidos. Es crucial continuar con la investigación y las medidas preventivas para mitigar los riesgos asociados con estas toxinas y proteger a las comunidades costeras y a los consumidores de mariscos a nivel mundial.

Citas

“Cambios en el contenido de toxinas, biomasa y pigmentos del dinoflagelado Alexandrium minutum durante la realimentación con nitrógeno y el crecimiento bajo estrés por nitrógeno o fósforo en JSTOR.” Accessed: Sep. 13, 2024. [Online]. Available: https://www.jstor.org/stable/24847614 [55]

A. . F. of A. Matsuda, T. Nishijima, and K. Fukami, “Effects of nitrogenous and phosphorus nutrients on the growth of toxic dinoflagellate Alexandrium catenella,” Bulletin of the Japanese Society of Scientific Fisheries (Japan), vol. 65, no. 5, 1999. [52]

A. Moustafa, J. E. Loram, J. D. Hackett, D. M. Anderson, F. G. Plumley, and D. Bhattacharya, “Origin of Saxitoxin Biosynthetic Genes in Cyanobacteria,” PLoS One, vol. 4, no. 6, p. e5758, Jun. 2009, doi: 10.1371/JOURNAL.PONE.0005758. [70]

A. Murata, S. C. Y. Leong, Y. Nagashima, and S. Taguchi, “Nitrogen:Phosphorus supply ratio may control the protein and total toxin of dinoflagellate Alexandrium tamarense,” Toxicon, vol. 48, no. 6, pp. 683–689, Nov. 2006, doi: 10.1016/J.TOXICON.2006.08.004. [53]

A. Reich et al., “Assessing the impact of shellfish harvesting area closures on neurotoxic shellfish poisoning (NSP) incidence during red tide (Karenia brevis) blooms,” Harmful Algae, vol. 43, pp. 13–19, Mar. 2015, doi: 10.1016/J.HAL.2014.12.003. [58]

B. B. Prézelin and R. S. Alberte, “Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates,” Proceedings of the National Academy of Sciences, vol. 75, no. 4, pp. 1801–1804, Apr. 1978, doi: 10.1073/PNAS.75.4.1801. [68]

B. John Chia-Chih Chang, “AN ECOLOGICAL STUDY OF BUTTER-CLAM (SAXIDOMJS GIGANTEUS) TOXICITY IN SOUTHEAST ALASKA,” 1971. [2]

C. Kao and S. Levinson, “Tetrodotoxin, saxitoxin, and the molecular biology of the sodium channel ,” Ann N Y Acad Sci, vol. 479, pp. 1–445, 1986. [5]

C. Langdon, “On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis,” J Plankton Res, vol. 9, no. 3, pp. 459–482, Jan. 1987, doi: 10.1093/PLANKT/9.3.459. [43]

C. Sato et al., “The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities,” Nature 2001 409:6823, vol. 409, no. 6823, pp. 1047–1051, Feb. 2001, doi: 10.1038/35059098. [19]

D. J. McGillicuddy, D. M. Anderson, D. R. Lynch, and D. W. Townsend, “Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model,” Deep Sea Research Part II: Topical Studies in Oceanography, vol. 52, no. 19–21, pp. 2698–2714, Sep. 2005, doi: 10.1016/J.DSR2.2005.06.021. [67]

D. Jiang et al., “Structure of the Cardiac Sodium Channel,” Cell, vol. 180, no. 1, pp. 122-134.e10, Jan. 2020, doi: 10.1016/J.CELL.2019.11.041/ASSET/BE7C94C3-A60B-4386-BC34-00BC9C66EB52/MAIN.ASSETS/FIGS7.JPG. [23]

D. M. Anderson and K. Rengefors, “Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: The importance of life cycle events,” Limnol Oceanogr, vol. 51, no. 2, pp. 860–873, Mar. 2006, doi: 10.4319/LO.2006.51.2.0860. [32]

D. M. Anderson, P. M. Glibert, and J. M. Burkholder, “Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences,” Estuaries, vol. 25, no. 4, pp. 704–726, 2002, doi: 10.1007/BF02804901/METRICS. [38]

E. Benoit, D. Servent, and J. Molgó, “The voltage-dependent sodium channel: A well-known molecular target of saxitoxins (cyanotoxins), ciguatoxins and brevetoxins (phycotoxins),” in PHYCOTOX 2023-GDR Annual Conference on Toxic Microalgae, 2023. [14]

E. Garcés, I. Bravo, M. Vila, R. I. Figueroa, M. Masó, and N. Sampedro, “Relationship between vegetative cells and cyst production during Alexandrium minutum bloom in Arenys de Mar harbour (NW Mediterranean),” J Plankton Res, vol. 26, no. 6, pp. 637–645, Jun. 2004, doi: 10.1093/PLANKT/FBH065. [35]

E. H. JOHN and K. J. FLYNN, “Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N[ratio ]P supply ratios on internal toxin and nutrient levels,” Eur J Phycol, vol. 35, no. 1, pp. 11–23, 2000, Accessed: Sep. 13, 2024. [Online]. Available: https://www.cambridge.org/core/journals/european-journal-of-phycology/article/abs/growth-dynamics-and-toxicity-of-alexandrium-fundyense-dinophyceae-the-effect-of-changing-nratio-p-supply-ratios-on-internal-toxin-and-nutrient-levels/0EFE4A29F9DC0316C3E5CD653FFC71E2 [51]

E. J. Schantz et al., “The Structure of Saxitoxin,” J Am Chem Soc, vol. 97, no. 5, pp. 1238–1239, Mar. 1975, doi: 10.1021/JA00838A045/SUPPL_FILE/JA00838A045_SI_001.PDF. [7]

E. L. Lilly, D. M. Kulis, P. Gentien, and D. M. Anderson, “Paralytic shellfish poisoning toxins in France linked to a human-introduced strain of Alexandrium catenella from the western Pacific: evidence from DNAand toxin analysis,” J Plankton Res, vol. 24, no. 5, pp. 443–452, May 2002, doi: 10.1093/PLANKT/24.5.443. [36]

E. Usleber, M. Donald, M. Straka, and E. Märtlbauer, “Comparison of enzyme immunoassay and mouse bioassay for determining paralytic shellfish poisoning toxins in shellfish,” Food Addit Contam, vol. 14, no. 2, pp. 193–198, 1997, doi: 10.1080/02652039709374514. [11]

G. F. King, P. Escoubas, and G. M. Nicholson, “Peptide toxins that selectively target insect NaV and Ca V channels,” Channels, vol. 2, no. 2, pp. 100–116, 2008, doi: 10.4161/CHAN.2.2.6022. [18]

G. Usup, L. C. Pin, A. Ahmad, and L. P. Teen, “Alexandrium (Dinophyceae) species in Malaysian waters,” Harmful Algae, vol. 1, no. 3, pp. 265–275, Oct. 2002, doi: 10.1016/S1568-9883(02)00044-6. [28]

H. Glover, J. Beardall, and I. Morris, “EFFECTS OF ENVIRONMENTAL FACTORS ON PHOTOSYNTHESIS PATTERNS IN PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE). I. EFFECT OF NITROGEN DEFICIENCY AND LIGHT INTENSITY1,” J Phycol, vol. 11, no. 4, pp. 424–429, Dec. 1975, doi: 10.1111/J.1529-8817.1975.TB02806.X. [65]

H. Kim, H. Park, H. Wang, H. Y. Yoo, J. Park, and J. S. Ki, “Low Temperature and Cold Stress Significantly Increase Saxitoxins (STXs) and Expression of STX Biosynthesis Genes sxtA4 and sxtG in the Dinoflagellate Alexandrium catenella,” Marine Drugs 2021, Vol. 19, Page 291, vol. 19, no. 6, p. 291, May 2021, doi: 10.3390/MD19060291. [57]

H. R. Guy and P. Seetharamulu, “Molecular model of the action potential sodium channel.,” Proceedings of the National Academy of Sciences, vol. 83, no. 2, pp. 508–512, Jan. 1986, doi: 10.1073/PNAS.83.2.508. [22]

H. Sommer, “The occurrence of the paralytic shell-fish poison in the common sand crab,” Science (1979), vol. 76, no. 1981, pp. 574–575, Dec. 1932, doi: 10.1126/SCIENCE.76.1981.574/ASSET/FD100374-70A9-44CD-92E7-3324BCA26DAF/ASSETS/SCIENCE.76.1981.574.FP.PNG. [4]

H. Terlau and W. Stühmer, “Structure and function of voltage-gated ion channels.,” Naturwissenschaften, vol. 85, no. 9, pp. 437–444, Sep. 1998, doi: 10.1007/S001140050527. [15]

H. Wang, H. Kim, H. Park, and J. S. Ki, “Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum,” Science of The Total Environment, vol. 802, p. 149801, Jan. 2022, doi: 10.1016/J.SCITOTENV.2021.149801. [39]

I. b. 1842 Petroff, “Report on the population, industries, and resources of Alaska,” 1884, G.P.O. [3]

I. Bravo, E. Garcés, J. Diogène, S. Fraga, N. Sampedro, and R. I. Figueroa, “Resting cysts of the toxigenic dinoflagellate genus Alexandrium in recent sediments from the Western Mediterranean coast, including the first description of cysts of A. kutnerae and A. peruvianum,” Eur J Phycol, vol. 41, no. 3, pp. 293–302, Aug. 2006, doi: 10.1080/09670260600810360. [30]

J. I. Mardones, C. Bolch, L. Guzmán, J. Paredes, D. Varela, and G. M. Hallegraeff, “Role of resting cysts in Chilean Alexandrium catenella dinoflagellate blooms revisited,” Harmful Algae, vol. 55, pp. 238–249, May 2016, doi: 10.1016/J.HAL.2016.03.020. [33]

J. Jerney, S. A. Ahonen, P. Hakanen, S. Suikkanen, and A. Kremp, “Generalist Life Cycle Aids Persistence of Alexandrium ostenfeldii (Dinophyceae) in Seasonal Coastal Habitats of the Baltic Sea,” J Phycol, vol. 55, no. 6, pp. 1226–1238, Dec. 2019, doi: 10.1111/JPY.12919. [37]

J. L. Naves, M. P. Prado, M. Rangel, B. De Sanctis, G. Machado-Santelli, and J. C. Freitas, “Cytotoxicity in the marine dinoflagellate Prorocentrum mexicanum from Brazil,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 143, no. 1, pp. 73–77, May 2006, doi: 10.1016/J.CBPC.2005.12.002. [72]

J. P. Parkhill and A. D. Cembella, “Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada,” J Plankton Res, vol. 21, no. 5, pp. 939–955, May 1999, doi: 10.1093/PLANKT/21.5.939. [46]

J. P. Parkhill and A. D. Cembella, “Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada,” J Plankton Res, vol. 21, no. 5, pp. 939–955, May 1999, doi: 10.1093/PLANKT/21.5.939. [47]

J. Sobel and J. Painter, “Illnesses caused by marine toxins,” Clinical Infectious Diseases, vol. 41, no. 9, pp. 1290–1296, Nov. 2005, doi: 10.1086/496926/2/41-9-1290-TBL001.GIF. [74]

J. W. West, D. E. Patton, T. Scheuer, Y. Wang, A. L. Goldin, and W. A. Catterall, “A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation.,” Proceedings of the National Academy of Sciences, vol. 89, no. 22, pp. 10910–10914, Nov. 1992, doi: 10.1073/PNAS.89.22.10910. [21]

K. Flynn, K. J. Jones, and K. J. Flynn, “Comparisons among species of Alexandrium (dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture,” Mar Biol, vol. 126, no. 1, pp. 9–18, 1996, doi: 10.1007/BF00571372/METRICS. [45]

K. Hamasaki, M. Horie, S. Tokimitsu, T. Toda, and S. Taguchi, “Variability in Toxicity of the Dinoflagellate Alexandrium Tamarense Isolated from Hiroshima Bay, Western Japan, as a Reflection of Changing Environmental Conditions,” J Plankton Res, vol. 23, no. 3, pp. 271–278, Mar. 2001, doi: 10.1093/PLANKT/23.3.271. [59]

K. Huang et al., “Comparative uptake and assimilation of nitrate, ammonium, and urea by dinoflagellate Karenia mikimotoi and diatom Skeletonema costatum s.l. in the coastal waters of the East China Sea,” Mar Pollut Bull, vol. 155, p. 111200, Jun. 2020, doi: 10.1016/J.MARPOLBUL.2020.111200. [49]

K. J. James, B. Carey, J. O’Halloran, F. N. A. M. Van Pelt, and Z. Škrabáková, “Shellfish toxicity: human health implications of marine algal toxins,” Epidemiol Infect, vol. 138, no. 7, pp. 927–940, Jul. 2010, doi: 10.1017/S0950268810000853. [73]

K. S. Hii, P. T. Lim, N. F. Kon, Y. Takata, G. Usup, and C. P. Leaw, “Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for the saxitoxin genes and toxin production,” Harmful Algae, vol. 56, pp. 9–21, Jun. 2016, doi: 10.1016/J.HAL.2016.04.005. [54]

L. E. Fleming et al., “Review of Florida red tide and human health effects,” Harmful Algae, vol. 10, no. 2, pp. 224–233, Jan. 2011, doi: 10.1016/J.HAL.2010.08.006. [76]

L. E. Llewellyn, “Saxitoxin, a toxic marine natural product that targets a multitude of receptors,” Nat Prod Rep, vol. 23, no. 2, pp. 200–222, Mar. 2006, doi: 10.1039/B501296C. [1]

L. E. Llewellyn, “Saxitoxin, a toxic marine natural product that targets a multitude of receptors,” Nat Prod Rep, vol. 23, no. 2, pp. 200–222, Mar. 2006, doi: 10.1039/B501296C. [9]

L. Nguyen-Ngoc, “An autecological study of the potentially toxic dinoflagellate Alexandrium affine isolated from Vietnamese waters,” Harmful Algae, vol. 3, no. 2, pp. 117–129, Apr. 2004, doi: 10.1016/S1568-9883(03)00062-3. [26]

L. Ou, D. Wang, B. Huang, H. Hong, Y. Qi, and S. Lu, “Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters,” J Plankton Res, vol. 30, no. 9, pp. 1007–1017, Sep. 2008, doi: 10.1093/PLANKT/FBN058. [56]

M. Laabir et al., “Influence of Environmental Factors on the Paralytic Shellfish Toxin Content and Profile of Alexandrium catenella (Dinophyceae) Isolated from the Mediterranean Sea,” Marine Drugs 2013, Vol. 11, Pages 1583-1601, vol. 11, no. 5, pp. 1583–1601, May 2013, doi: 10.3390/MD11051583. [64]

M. Natsuike, K. Yokoyama, G. Nishitani, Y. Yamada, I. Yoshinaga, and A. Ishikawa, “Germination fluctuation of toxic Alexandrium fundyense and A. pacificum cysts and the relationship with bloom occurrences in Kesennuma Bay, Japan,” Harmful Algae, vol. 62, pp. 52–59, Feb. 2017, doi: 10.1016/J.HAL.2016.11.018. [34]

M. Noda et al., “Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence,” Nature 1984 312:5990, vol. 312, no. 5990, pp. 121–127, 1984, doi: 10.1038/312121a0. [20]

M. W. Vandersea et al., “Environmental factors influencing the distribution and abundance of Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska,” Harmful Algae, vol. 77, pp. 81–92, Jul. 2018, doi: 10.1016/J.HAL.2018.06.008. [42]

M. Wiese, P. M. D’Agostino, T. K. Mihali, M. C. Moffitt, and B. A. Neilan, “Neurotoxic Alkaloids: Saxitoxin and Its Analogs,” Marine Drugs 2010, Vol. 8, Pages 2185-2211, vol. 8, no. 7, pp. 2185–2211, Jul. 2010, doi: 10.3390/MD8072185. [6]

N. Makita, P. B. Bennett, and A. L. George, “Molecular Determinants of β1 Subunit-Induced Gating Modulation in Voltage-Dependent Na+ Channels,” Journal of Neuroscience, vol. 16, no. 22, pp. 7117–7127, Nov. 1996, doi: 10.1523/JNEUROSCI.16-22-07117.1996. [17]

P. Ciminiello, E. Fattorusso, M. Forino, and M. Montresor, “Saxitoxin and neosaxitoxin as toxic principles of Alexandrium andersoni (Dinophyceae) from the Gulf of Naples, Italy,” Toxicon, vol. 38, no. 12, pp. 1871–1877, Dec. 2000, doi: 10.1016/S0041-0101(00)00099-4. [27]

P. T. Lim, C. P. Leaw, S. Sato, C. van Thuoc, A. Kobiyama, and T. Ogata, “Effect of salinity on growth and toxin production of Alexandrium minutum isolated from a shrimp culture pond in northern Vietnam,” J Appl Phycol, vol. 23, no. 5, pp. 857–864, Oct. 2011, doi: 10.1007/S10811-010-9593-8/METRICS. [62]

P. Vale, “Metabolites of saxitoxin analogues in bivalves contaminated by Gymnodinium catenatum,” Toxicon, vol. 55, no. 1, pp. 162–165, Jan. 2010, doi: 10.1016/J.TOXICON.2009.07.010. [10]

Q. T. N. Bui, B. Pradhan, H. S. Kim, and J. S. Ki, “Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects,” Toxins 2024, Vol. 16, Page 210, vol. 16, no. 5, p. 210, Apr. 2024, doi: 10.3390/TOXINS16050210. [41]

Q. T. N. Bui, H. Kim, H. Park, and J. S. Ki, “Salinity Affects Saxitoxins (STXs) Toxicity in the Dinoflagellate Alexandrium pacificum, with Low Transcription of SXT-Biosynthesis Genes sxtA4 and sxtG,” Toxins 2021, Vol. 13, Page 733, vol. 13, no. 10, p. 733, Oct. 2021, doi: 10.3390/TOXINS13100733. [25]

Q. T. N. Bui, H. Kim, H. Park, and J. S. Ki, “Salinity Affects Saxitoxins (STXs) Toxicity in the Dinoflagellate Alexandrium pacificum, with Low Transcription of SXT-Biosynthesis Genes sxtA4 and sxtG,” Toxins 2021, Vol. 13, Page 733, vol. 13, no. 10, p. 733, Oct. 2021, doi: 10.3390/TOXINS13100733. [63]

R. B. Rivkin, “Influence of irradiance and spectral quality on the carbon metabolism of phytoplankton. I. Photosynthesis, chemical composition and growth,” MARINE ECOLOGY PROGRESS SERIES Mar. Ecol. Prog. Ser, vol. 55, no. 2, 1989. [69]

R. G. Stafford and H. B. Hines, “Urinary elimination of saxitoxin after intravenous injection,” Toxicon, vol. 33, no. 11, pp. 1501–1510, Nov. 1995, doi: 10.1016/0041-0101(95)00081-V. [8]

R. I. Figueroa, E. Garcés, and I. Bravo, “Comparative study of the life cycles of Alexandrium tamutum and Alexandrium minutum (Gonyaulacales, Dinophyceae) in culture1,” J Phycol, vol. 43, no. 5, pp. 1039–1053, Oct. 2007, doi: 10.1111/J.1529-8817.2007.00393.X. [31]

R. J. S. Orr, A. Stüken, S. A. Murray, and K. S. Jakobsen, “Evolutionary acquisition and loss of saxitoxin biosynthesis in dinoflagellates: The second ‘core’ gene, sxtG,” Appl Environ Microbiol, vol. 79, no. 7, pp. 2128–2136, Apr. 2013, doi: 10.1128/AEM.03279-12/SUPPL_FILE/ZAM999104223SO1.PDF. [71]

R. M. Errera and L. Campbell, “Osmotic stress triggers toxin production by the dinoflagellate Karenia brevis,” Proc Natl Acad Sci U S A, vol. 108, no. 26, pp. 10597–10601, Jun. 2011, doi: 10.1073/PNAS.1104247108/SUPPL_FILE/PNAS.201104247SI.PDF. [61]

R. S. Rogers and H. Rapoport, “The pKa’s of Saxitoxin,” J Am Chem Soc, vol. 102, no. 24, pp. 7335–7339, 1980, doi: 10.1021/JA00544A030/ASSET/JA00544A030.FP.PNG_V03. [12]

S. C. Y. Leong, M. Maekawa, and S. Taguchi, “Carbon and nitrogen acquisition by the toxic dinoflagellate Alexandrium tamarense in response to different nitrogen sources and supply modes,” Harmful Algae, vol. 9, no. 1, pp. 48–58, Jan. 2010, doi: 10.1016/J.HAL.2009.07.003. [44]

S. E. Shumway, “A Review of the Effects of Algal Blooms on Shellfish and Aquaculture,” J World Aquac Soc, vol. 21, no. 2, pp. 65–104, Jun. 1990, doi: 10.1111/J.1749-7345.1990.TB00529.X. [75]

S. J. Oh et al., “Effects of irradiance of various wavelengths from light-emitting diodes on the growth of the harmful dinoflagellate Heterocapsa circularisquama and the diatom Skeletonema costatum,” Fisheries Science, vol. 74, no. 1, pp. 137–145, Feb. 2008, doi: 10.1111/J.1444-2906.2007.01503.X/METRICS. [66]

S. Murray, U. John, H. Savela, and A. Kremp, “Alexandrium spp.: Genetic and ecological factors influencing saxitoxin production and proliferation,” Climate Change and Marine and Freshwater Toxins, pp. 133–166, Dec. 2020, doi: 10.1515/9783110625738-004/HTML. [29]

S. Murray, U. John, H. Savela, and A. Kremp, “Alexandrium spp.: Genetic and ecological factors influencing saxitoxin production and proliferation,” Climate Change and Marine and Freshwater Toxins, pp. 133–166, Dec. 2020, doi: 10.1515/9783110625738-004/HTML. [40]

S. T. Dyhrman and D. M. Anderson, “Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium,” Limnol Oceanogr, vol. 48, no. 2, pp. 647–655, Mar. 2003, doi: 10.4319/LO.2003.48.2.0647. [48]

T. Nakagawa, M. Pellegrino, K. Sato, L. B. Vosshall, and K. Touhara, “Ion Channels of Excitable Membranes Third Edition,” (No Title), vol. 7, no. 3, Mar. 2001, doi: 10.1371/JOURNAL.PONE.0032372. [16]

T. Ogata, T. Ishimaru, and M. Kodama, “Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis,” Mar Biol, vol. 95, no. 2, pp. 217–220, Jul. 1987, doi: 10.1007/BF00409008/METRICS. [60]

T. Schlief, R. Schönherr, K. Imoto, and S. H. Heinemann, “Pore properties of rat brain II sodium channels mutated in the selectivity filter domain,” European Biophysics Journal, vol. 25, no. 2, pp. 75–91, 1996, doi: 10.1007/S002490050020/METRICS. [24]

Y. Collos et al., “Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, southern France,” Harmful Algae, vol. 6, no. 6, pp. 781–789, Nov. 2007, doi: 10.1016/J.HAL.2007.04.003. [50]

Y. Shimizu, C. ping Hsu, and A. Genenah, “Structure of Saxitoxin in Solutions and Stereochemistry of Dihydrosaxitoxins,” J Am Chem Soc, vol. 103, no. 3, pp. 605–609, 1981, doi: 10.1021/JA00393A017/ASSET/JA00393A017.FP.PNG_V03. [13]

Descargas

Los datos de descargas todavía no están disponibles.

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
0
2.4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
No
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
38%
33%
Días para la publicación 
114
145

Indexado en

Editor y equipo editorial
Perfiles
Editorial 
Universidad Metropolitana de Educación, Ciencia y Tecnología