The content of the publications and the links suggested in them are the sole responsibility of the authors and not of the Metropolitan University of Education, Science and Technology (UMECIT) or of the journal ORATORES. They are protected by international copyright laws as well as the logos of UMECIT AND ORATORES, hence their reproduction is totally prohibited.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors maintain the copyright and transfer the right of the first publication to the journal, with the article registered with Creative Commons Attribution-NonCommercial-NoDerivatives License, which allow others They can download the works published in this magazine and share them with other people, as long as their authorship is recognized, but they cannot be changed in any way nor can they be used commercially.
Authors are recommended to include their work in social networks such as Researchgate and institutional repositories once the article or visible fact has been published on the journal page, without forgetting to include the digital document identifier and the name of the journal.
Abstract
During the 1940s and 1950s, most Latin American countries implemented pension systems based on public assistance, which at the end of the century presented difficulties typical of developing countries (limited coverage, inequality, low replacement rates, etc.), which led to the implementation of adjustments and reforms. Worldwide (including Latin America), Retirement Systems face numerous challenges today, especially those derived from the increase in longevity and the decrease in the birth rate.
This article explores the discourse of Latin American academia on the subject of Retirement Systems in Latin America, analyzing a corpus of 317 titles of articles available in the Scielo repository, using different Text Mining techniques. The Text Mining (v3.1.11) and Text Table (v 1.16.1) modules of Orange Data Mining were used, through different unsupervised procedures (Word Cloud, Bag of Words, Extract Keyword) until reaching Topic Modeling with Dirichlet's Latent Allocation.
After evaluating the quantitative indicators and exploring qualitatively the content of the topics generated, it was decided to choose the solution of four topics, which could be titled respectively as "Economic-Systemic" (characteristics of the different Old Age Pension Systems), "Benefits" (services covered by these systems, such as health, food, etc.), "Legal-Labor" (legal and human rights aspects) and "Access-Coverage" (participation and inequality).
These topics summarize the main recurring themes in the Latin American academic discussion around Retirement Pensions.
Keywords
References
Bail, C. A. (2016). Combining natural language processing and network analysis to examine how advocacy organizations stimulate conversation on social media. Proceedings of the National Academy of Sciences of the United States of America, 113(42), 11823–11828. https://doi.org/10.1073/pnas.1607151113
Banco Mundial (2007). The World Bank Pension Conceptual Frameword. Recuperado de https://documents1.worldbank.org/curated/en/389011468314712045/pdf/457280BRI0Box31Concept1Sept20081pdf.pdf
Bècue, M., Lebart, L. y Rajadell, N. (1992). El análisis estadístico de datos textuales. La lectura según los escolares de enseñanza primaria [versión Adobe PDF]. Anuario de Psicología, (55), 7-22. Recuperado de http://diposit.ub.edu/dspace/bitstream/2445/24200/1/79037.pdf
Behar, J. (1993). Aproximación al análisis textual informatizado, Anuario de Psicología, (59), 61-78. Recuperado de http://diposit.ub.edu/dspace/bitstream/2445/24202/1/101702.pdf
Benzécri, J.P. (1984). Description des textes et analyse documentaire. Les Cahiers de l´Analyse des Données, 9(2), 205-211. Recuperado de: http://www.numdam.org/item/CAD_1984__9_2_205_0.pdf
Calventus, J. (2008). Una aproximación al análisis de datos cualitativos textuales [Monografía]. Recuperado de http://adcualimayor.googlepages.com/calventus2008.pdf
Calventus, J. (2019). Análisis de datos textuales. Una primera aproximación. Revista Stultifera de Humanidades y Ciencias Sociales, 2(1), 50-62. http://revistas.uach.cl/index.php/revstul/article/view/5825
Cornejo, C.J. (2021). Análisis a los sistemas de pensiones del mundo a través de herramientas biplot para la clusterización mediante actores del sistema, indicadores del entorno y ranking mundial (usal.es). Recuperado de: https://gredos.usal.es/handle/10366/149315
Dahl, D. (2023) Natural Lenguage Understanding with Python. Packt. Birmingham-Mumbay
Doerfel, M. L. (1998). What constitutes semantic network analysis? A comparison of research and methodologies. Connections, 21(2), 16-26. Recuperado de: https://qualquant.org/wp-content/uploads/cda/Doerfel%20What%20constitutes%20semantic%20network%20analysis.pdf
Dos Santos, M.F. (2013). Análisis Lexicométrico del Significado de la Palabra Dinero. Trabajo de Ascenso a Profesor Asistente. Universidad Central de Venezuela. Caracas.
Gaikwad, S.V., Chaugule, A., y Patil, P. (2014). Text mining methods and techniques. International Journal of Computer Applications, 85(17). Recuperado de 10.1.1.428.8805-libre.pdf
HaCohen-Kerner, Y., Miller, D., Yigal, Y. (2020) The influence of preprocessing on text classification using a bag-of-words representation. PLoS ONE 15(5): e0232525. Recuperado de https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232525&type=printable
Hasan, M., Rahman, A., Karim, M. R., Khan, M. S. I., & Islam, M. J. (2021). Normalized approach to find optimal number of topics in Latent Dirichlet Allocation (LDA). In Proceedings of International Conference on Trends in Computational and Cognitive Engineering: Proceedings of TCCE 2020 (pp. 341-354). Springer Singapore. Recuperado de Normalized-Approach-to-Find-Optimal-Number-of-Topics-in-Latent-Dirichlet-Allocation-LDA.pdf
Instituto Santa Lucía. (sf). Pensiones en Transición. Recuperado de https://institutosantalucia.es/wp-content/uploads/2020/10/pensiones_en_transicion.pdf
Jacobi, C., Atteveldt, W. y Welbers, K. (2015). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism, 4, 1-18. Recuperado de: https://www.taylorfrancis.com/chapters/edit/10.4324/9781315115047-7/quantitative-analysis-large-amounts-journalistic-texts-using-topic-modelling-carina-jacobi-wouter-van-atteveldt-kasper-welbers
Joseph, S., Sedimo, K. y Kaniwa, F. y Hlomani, H. y Letsholo, K. (2016). Natural Language Processing: A Review, 6, 207-210. Recuperado de: https://www.icts.res.in/sites/default/files/media/media-library/NLPIntro.pdf
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
Mesa-Lago, C. (2009). Efectos de la crisis global sobre la seguridad social de salud y pensiones en América Latina y el Caribe y recomendaciones de políticas. Cepal. Recuperado de https://repositorio.cepal.org/server/api/core/bitstreams/511cbdb3-54c7-4bde-8ed4-3234890b5116/content
Moscoloni, N., y Satriano, C. (2000). Importancia del análisis textual como herramienta para el análisis del discurso. Cinta de Moebio: Revista Electrónica de Epistemología de Ciencias Sociales, (9), 4. Recuperado de https://www.researchgate.net/profile/Nora-Moscoloni-3/publication/239567198_Importancia_del_Analisis_Textual_como_Herramienta_para_el_Analisis_del_Discurso/links/0c96053c7c524d03e5000000/Importancia-del-Analisis-Textual-como-Herramienta-para-el-Analisis-del-Discurso.pdf
Paranyushkin, D. (2011). Identifying the Pathways for Meaning Circulation using Text Network Analysis. Nodus Labs, 26, 1-26. Recuperado de: https://noduslabs.com/wp-content/uploads/2012/04/Pathways-Meaning-Text-Network-Analysis.pdf
Pykes, C. (2023). What is Topic Modeling? An Introduction With Examples. Recuperado de https://www.datacamp.com/tutorial/what-is-topic-modeling
Sarwar, T. B., Noor, N. M., & Miah, M. S. U. (2022). Evaluating keyphrase extraction algorithms for finding similar news articles using lexical similarity calculation and semantic relatedness measurement by word embedding. PeerJ Computer Science, 8, e1024. Recuperado de https://peerj.com/articles/cs-1024.pdf
van Atteveldt, W., Kleinnijenhuis, J. , Ruigrok, N. y Schlobach, S. (2008) Good News or Bad News? Conducting Sentiment Analysis on Dutch Text to Distinguish Between Positive and Negative Relations, Journal of Information Technology & Politics, 5(1), 73-94. Recuperado de: https://www.tandfonline.com/doi/abs/10.1080/19331680802154145
Withehouse, Eduard (2007) Pension Panorama: Retirement-income systems in 53 coutries. The World Bank. Whashington DF. Recuperado de: Pensions Panorama - ISBN: 0821367641 (uni-muenchen.de)
Yao, Mariya (2017). 4 Approaches To Natural Language Processing & Understanding. Recuperado de: https://www.freecodecamp.org/news/how-natural-language-processing-powers-chatbots-4-common-approaches-a077a4de04d4/
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Universidad Metropolitana de Educación, Ciencia y Tecnología
- Publisher
- Universidad Metropolitana de Educación, Ciencia y Tecnología