Dimensions

PlumX

How to Cite
Dos Santos Fernández, M. F. (2024). Latin American pension systems as seen from academia: Modeling topics from scientific article titles. Oratores Journal, 1(21), 42–59. https://doi.org/10.37594/oratores.n21.1539
License terms

The content of the publications and the links suggested in them are the sole responsibility of the authors and not of the Metropolitan University of Education, Science and Technology (UMECIT) or of the journal ORATORES. They are protected by international copyright laws as well as the logos of UMECIT AND ORATORES, hence their reproduction is totally prohibited.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The authors maintain the copyright and transfer the right of the first publication to the journal, with the article registered with Creative Commons Attribution-NonCommercial-NoDerivatives License, which allow others      They can download the works published in this magazine and share them with other people, as long as their authorship is recognized, but they cannot be changed in any way nor can they be used commercially.

Authors are recommended to include their work in social networks such as Researchgate and institutional repositories once the article or visible fact has been published on the journal page, without forgetting to include the digital document identifier and the name of the journal.

                                                               

Abstract

During the 1940s and 1950s, most Latin American countries implemented pension systems based on public assistance, which at the end of the century presented difficulties typical of developing countries (limited coverage, inequality, low replacement rates, etc.), which led to the implementation of adjustments and reforms. Worldwide (including Latin America), Retirement Systems face numerous challenges today, especially those derived from the increase in longevity and the decrease in the birth rate.

This article explores the discourse of Latin American academia on the subject of Retirement Systems in Latin America, analyzing a corpus of 317 titles of articles available in the Scielo repository, using different Text Mining techniques. The Text Mining (v3.1.11) and Text Table (v 1.16.1) modules of Orange Data Mining were used, through different unsupervised procedures (Word Cloud, Bag of Words, Extract Keyword) until reaching Topic Modeling with Dirichlet's Latent Allocation. 

After evaluating the quantitative indicators and exploring qualitatively the content of the topics generated, it was decided to choose the solution of four topics, which could be titled respectively as "Economic-Systemic" (characteristics of the different Old Age Pension Systems), "Benefits" (services covered by these systems, such as health, food, etc.), "Legal-Labor" (legal and human rights aspects) and "Access-Coverage" (participation and inequality). 

These topics summarize the main recurring themes in the Latin American academic discussion around Retirement Pensions.

References

Attanasio, O., Kitao, S., & Violante, G. L. (2007). Global demographic trends and social security reform. Journal of monetary Economics, 54(1), 144-198. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0304393206002431

Bail, C. A. (2016). Combining natural language processing and network analysis to examine how advocacy organizations stimulate conversation on social media. Proceedings of the National Academy of Sciences of the United States of America, 113(42), 11823–11828. https://doi.org/10.1073/pnas.1607151113

Banco Mundial (2007). The World Bank Pension Conceptual Frameword. Recuperado de https://documents1.worldbank.org/curated/en/389011468314712045/pdf/457280BRI0Box31Concept1Sept20081pdf.pdf

Bècue, M., Lebart, L. y Rajadell, N. (1992). El análisis estadístico de datos textuales. La lectura según los escolares de enseñanza primaria [versión Adobe PDF]. Anuario de Psicología, (55), 7-22. Recuperado de http://diposit.ub.edu/dspace/bitstream/2445/24200/1/79037.pdf

Behar, J. (1993). Aproximación al análisis textual informatizado, Anuario de Psicología, (59), 61-78. Recuperado de http://diposit.ub.edu/dspace/bitstream/2445/24202/1/101702.pdf

Benzécri, J.P. (1984). Description des textes et analyse documentaire. Les Cahiers de l´Analyse des Données, 9(2), 205-211. Recuperado de: http://www.numdam.org/item/CAD_1984__9_2_205_0.pdf

Calventus, J. (2008). Una aproximación al análisis de datos cualitativos textuales [Monografía]. Recuperado de http://adcualimayor.googlepages.com/calventus2008.pdf

Calventus, J. (2019). Análisis de datos textuales. Una primera aproximación. Revista Stultifera de Humanidades y Ciencias Sociales, 2(1), 50-62. http://revistas.uach.cl/index.php/revstul/article/view/5825

Cornejo, C.J. (2021). Análisis a los sistemas de pensiones del mundo a través de herramientas biplot para la clusterización mediante actores del sistema, indicadores del entorno y ranking mundial (usal.es). Recuperado de: https://gredos.usal.es/handle/10366/149315

Dahl, D. (2023) Natural Lenguage Understanding with Python. Packt. Birmingham-Mumbay

Doerfel, M. L. (1998). What constitutes semantic network analysis? A comparison of research and methodologies. Connections, 21(2), 16-26. Recuperado de: https://qualquant.org/wp-content/uploads/cda/Doerfel%20What%20constitutes%20semantic%20network%20analysis.pdf

Dos Santos, M.F. (2013). Análisis Lexicométrico del Significado de la Palabra Dinero. Trabajo de Ascenso a Profesor Asistente. Universidad Central de Venezuela. Caracas.

Gaikwad, S.V., Chaugule, A., y Patil, P. (2014). Text mining methods and techniques. International Journal of Computer Applications, 85(17). Recuperado de 10.1.1.428.8805-libre.pdf

HaCohen-Kerner, Y., Miller, D., Yigal, Y. (2020) The influence of preprocessing on text classification using a bag-of-words representation. PLoS ONE 15(5): e0232525. Recuperado de https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232525&type=printable

Hasan, M., Rahman, A., Karim, M. R., Khan, M. S. I., & Islam, M. J. (2021). Normalized approach to find optimal number of topics in Latent Dirichlet Allocation (LDA). In Proceedings of International Conference on Trends in Computational and Cognitive Engineering: Proceedings of TCCE 2020 (pp. 341-354). Springer Singapore. Recuperado de Normalized-Approach-to-Find-Optimal-Number-of-Topics-in-Latent-Dirichlet-Allocation-LDA.pdf

Instituto Santa Lucía. (sf). Pensiones en Transición. Recuperado de https://institutosantalucia.es/wp-content/uploads/2020/10/pensiones_en_transicion.pdf

Jacobi, C., Atteveldt, W. y Welbers, K. (2015). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism, 4, 1-18. Recuperado de: https://www.taylorfrancis.com/chapters/edit/10.4324/9781315115047-7/quantitative-analysis-large-amounts-journalistic-texts-using-topic-modelling-carina-jacobi-wouter-van-atteveldt-kasper-welbers

Joseph, S., Sedimo, K. y Kaniwa, F. y Hlomani, H. y Letsholo, K. (2016). Natural Language Processing: A Review, 6, 207-210. Recuperado de: https://www.icts.res.in/sites/default/files/media/media-library/NLPIntro.pdf

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4

Mesa-Lago, C. (2009). Efectos de la crisis global sobre la seguridad social de salud y pensiones en América Latina y el Caribe y recomendaciones de políticas. Cepal. Recuperado de https://repositorio.cepal.org/server/api/core/bitstreams/511cbdb3-54c7-4bde-8ed4-3234890b5116/content

Moscoloni, N., y Satriano, C. (2000). Importancia del análisis textual como herramienta para el análisis del discurso. Cinta de Moebio: Revista Electrónica de Epistemología de Ciencias Sociales, (9), 4. Recuperado de https://www.researchgate.net/profile/Nora-Moscoloni-3/publication/239567198_Importancia_del_Analisis_Textual_como_Herramienta_para_el_Analisis_del_Discurso/links/0c96053c7c524d03e5000000/Importancia-del-Analisis-Textual-como-Herramienta-para-el-Analisis-del-Discurso.pdf

Paranyushkin, D. (2011). Identifying the Pathways for Meaning Circulation using Text Network Analysis. Nodus Labs, 26, 1-26. Recuperado de: https://noduslabs.com/wp-content/uploads/2012/04/Pathways-Meaning-Text-Network-Analysis.pdf

Pykes, C. (2023). What is Topic Modeling? An Introduction With Examples. Recuperado de https://www.datacamp.com/tutorial/what-is-topic-modeling

Sarwar, T. B., Noor, N. M., & Miah, M. S. U. (2022). Evaluating keyphrase extraction algorithms for finding similar news articles using lexical similarity calculation and semantic relatedness measurement by word embedding. PeerJ Computer Science, 8, e1024. Recuperado de https://peerj.com/articles/cs-1024.pdf

van Atteveldt, W., Kleinnijenhuis, J. , Ruigrok, N. y Schlobach, S. (2008) Good News or Bad News? Conducting Sentiment Analysis on Dutch Text to Distinguish Between Positive and Negative Relations, Journal of Information Technology & Politics, 5(1), 73-94. Recuperado de: https://www.tandfonline.com/doi/abs/10.1080/19331680802154145

Withehouse, Eduard (2007) Pension Panorama: Retirement-income systems in 53 coutries. The World Bank. Whashington DF. Recuperado de: Pensions Panorama - ISBN: 0821367641 (uni-muenchen.de)

Yao, Mariya (2017). 4 Approaches To Natural Language Processing & Understanding. Recuperado de: https://www.freecodecamp.org/news/how-natural-language-processing-powers-chatbots-4-common-approaches-a077a4de04d4/

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
41
145

Indexed in

Editor & editorial board
profiles
Publisher 
Universidad Metropolitana de Educación, Ciencia y Tecnología